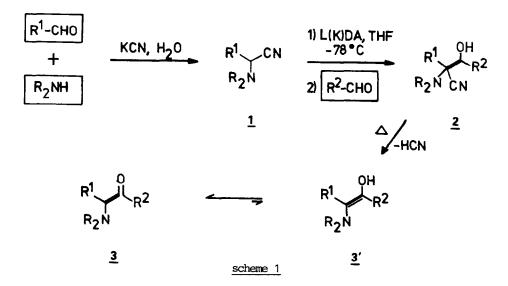
C-C - CONNECTIVE SYNTHESIS OF a-DIALKYLAMINO - KETONES FROM ALDEHYDES AND SEC.-AMINES


Dieter Enderst and Hermann Lotter

Institut für Organische Chemie und Biochemie, Rheinische Friedrich - Wilhelms - Universität Gerhard - Domagk - Str. 1, D-5300 Bonn, Germany


Summary: A simple and efficient 3 - step synthesis of a-dialkylamino - ketones 3 starting from aldehydes and sec.-amines is described. The unsummetrically aminoketones are obtained as pure regioisomers via reaction of metalated α -aminonitriles 1 with aldehydes, followed by thermal HCN-elimination/tautomerization.

a-Aminoketones of the general structure A constitute an important class of compounds in preparative organic chemistry¹ and as biologically significant substances². They are valuable starting materials of N - containing heterocycles, diamines, and aminoalcohols, such as biologically active ethanolamines. Although many routes to these compounds, for instance the reaction of α -haloketones with amines¹, the Dakin - West - reaction³, the Neber - rearrangement⁴, etc., have been described, most of these methods are not generally applicable and/or suffer from unsatisfactory yields, inaccessible starting materials, and lack of regioselectivity¹.

From the retrosynthetic point of view, α -aminoketones A should in principle be obtainable via C-C bond formation using an α -aminocarbanion synthon B and an acylcation synthon C.

It turned out, that indeed such a process is possible, and we now report a simple and efficient 3-step synthesis of α -dialkylamino ketones starting from easily accessible aldehydes and sec.amines. As is shown in scheme 1, the procedure involves the transformation of an aldehyde and a sec.-amine into the corresponding α -aminonitrile 1⁵, followed by metalation with lithium (or potassium) diisopropylamide (LDA or KDA) in tetrahydrofuran at $-78^{\circ}C$ (0.5 - 5h) and addition of a second aldehyde. During distillation of the adducts 2, formed in very good yields, HCNelimination occurrs and the resulting aminoenol - forms $\underline{3}$ ' immediately tautomerize to the desired α -aminoketones 3⁷.

Thus, the deprotonated α -aminonitriles function as equivalents of <u>B</u>, already demonstrated by Stork et al., and the aldehydes R²CHO as equivalents of acylcations <u>C</u>. Since the reaction of metalated α -aminonitriles with aldehydes can alternatively be used to prepare aminoalcohols⁸ or α -hydroxyketones⁹, this new route again enlarges the already great synthetic potential of these compounds¹⁰.

One major advantage of the method described above is the possibility to prepare α -dialkylamino derivatives of unsymmetrically ketones as pure regioisomers simply by synthon control. This may be demonstrated by the synthesis of the two regioisomers 3-dimethylamino-(<u>3b</u>) and 5-dimethylami-no-octanon-4(<u>3c</u>), starting from dimethylamine and either n-propanal/n-pentanal or two equivalents of n-butanal as building blocks in 67% and 60% yield respectively.

In all cases the HCN-elimination was quantitative and took place in the desired direction. The pure aminoketones, prepared in this way in good over all yields, are summarized in the table¹¹.

In the case of optically active $\underline{3g}$ the diastereometric excess was low(de = 15%, NMR)¹². With cinnamonaldehyde exclusively 1.2-addition occurred leading to $\underline{3h}$ in excellent over all yield.

Further development of the skope of this method and the analogous procedure using metalated α -cyanohydrines are now in progress.

<u>Acknowledgement</u>: We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Minister für Wissenschaft und Forschung des Landes Nordrhein - Westfalen for the support of this work.

	R ¹ -СНО	R ² -СНО	R ₂ NH	3	b.p.[^O C,torr] ^a	yield[%] ^b
a	н ₃ с-сно	с-С ₆ Н ₁₁ -СНО	Me ₂ NH	H ₃ C C ₆ H ₁₁ -c Me ₂ N	96-97/5 ^C	72 ^d (95)
b	с ₂ н ₅ -сно	n-C ₄ H ₉ -CHO	Me ₂ NH	C ₂ H ₅ Me ₂ N Me ₂ N	72-73/10	67 (85)
c	n-C ₃ H _{7.} -CHO) n-C ₃ H ₇ -CHO	Me2NH	n-C ₃ H ₇ Me ₂ N Me ₂ N	68-69/8	60 (84)
₫	н ₃ с-сю	n-С ₃ Н ₇ -СНО	Et2NH	H ₃ C Et ₂ N	78/15	75 (89)
<u>e</u>	с ₂ н ₅ -сно	с ₂ н ₅ -сно	Et2NH	C ₂ H ₅ Et ₂ N	67-68/15	d,e 55 (71)
f	н-сно	n-C ₄ H ₉ -CHO	(i-Pr) ₂ NH	(i-Pr)2N	102-104/12	44 ^d (56)
ā	н ₃ с-сно	с ₆ н ₅ -сно	N H H OMe	H ₃ C C ₆ H ₅ M H ₅ OMe	115/0.1 ^f	81 (85)
h	н ₃ с-сно	с ₆ н ₅ Сно	Et2NH	H ₃ C Et ₂ N C ₆ H ₅	105-106/0.2	79 (90)

Table. α - Dialkylamino - ketones 3 prepared from aldehydes and sec. - amines

a) Distillation over a 10 cm Vigreux - column. - b) Yield of distilled pure (97-99%, capillary-gc) aminoketones 3 based on 1; yield of crude adducts 2 in parenthesis. - c) Lit.:¹³ 220 - 240 OC. - d) Yield after a second Kugelrohr - distillation. - e) Contains ca. $3\% \ \underline{1e}(gc)$. - f) Oven temperature during Kugelrohr - distillation.

References and Notes

- Review: D.Mayer in Houben-Weyl, Methoden der Organischen Chemie, 4th Edit., E.Müller, Ed., Vol.VII/2c, G.Thieme Verlag, Stuttgart, 1977, p. 2253 ff.
- For a recent synthesis of α-aminoalkyl-aryl-ketones from α-amino acids see: T.F.Buckley III and H.Rapoport, J.Am.Chem.Soc. 103, 6157(1981).
- 3) W.Steglich and G.Höfle, Angew.Chem. 81, 1001(1969) and lit. cited therein.
- 4) C.O'Brien, Chem. Reviews 64, 81(1964).
- 5) The aminonitriles were prepared as follows: 1. R_2NH ·HCl/H₂O 2. KCN/H₂O, O^oC 3. 1.1 equiv. R^1 CHO, 2h, 25^oC (yields after distillation: 72 92%); <u>1f</u> was obtained via the bisulfite adduct: 1. R^1 CHO/NaHSO₃/H₂O, 25^oC 1h, 50^oC 2. R_2NH , 25^oC 5h, 70^oC 3. KCN/H₂O, 5h, 70^oC; 12h, 25^oC (76%).
- 6) To prevent any aminonitril hydrolysis to the corresponding α -hydroxyketones⁹, mild work up conditions were used: quenching at -78° C with sat.NH₄Cl-solution, work up of the cold mixture with ether, drying over Na₂SO₄/MgSO₄ (30 min) and concentration under inert gas. All compounds <u>2</u> were characterized by ¹H-NMR-and IR-spectra.
- 7) The formation of an α-aminoketone after distillation of the adduct of metalated N-methyl-Nphenylamino-acetonitrile and benzaldehyde was reported in 1976, C.Vonderheid, Dissertation, Universität Giessen; Prof.Ahlbrecht, Giessen, private communication, 1981.
- 8) G.Stork, R.M.Jacobson, and R.Levitz, Tetrahedron Lett. 1979, 771.
- 9) V.Reutrakul, P.Ratananukul, and S.Nimgirawath, Chem.Lett. 1980, 71.
- 10) For other recent applications see: a) S.F.Dyke, E.P.Tiley, A.W.C.White, and D.P.Gale, Tetrahedron <u>31</u>, 1219(1975). b) H.Ahlbrecht and C.Vonderheid, Synthesis <u>1975</u>, 512. c) H.Ahlbrecht and K.Pfaff, Synthesis <u>1978</u>, 897. d) G.Stork, A.A.Ozorio, and A.Y.W.Leong, Tetrahedron Lett. <u>1978</u>, 5175. e) H.Ahlbrecht, W.Raab, and C.Vonderheid, Synthesis <u>1979</u>, 127. f) V.Reutrakul, S.Nimgirawath, S.Panichanun, and P.Ratananukul, Chem. Lett. <u>1979</u>, 399. g) F.J.McEvoy and J.D.Albright, J.Org.Chem. <u>44</u>, 4597(1979). h) S.Ruchirawat, W.Lertwanawatana, and P.Thepchumrune, Tetrahedron Lett. <u>21</u>, 189(1980). i) W.E.McEwen, A.V.Grossi, R.J. MacDonald, and A.P.Stamegna, J.Org.Chem. <u>45</u>, 1301(1980). j) R.M.Jacobson and J.W.Clader, Tetrahedron Lett. <u>21</u>, 1205(1980). k) D.S.Grierson, M.Harris, and H.-P.Husson, J.Am.Chem. Soc. <u>102</u>, 1064(1980). 1) H.Schick, F.Theil, H.Jablokoff, and S.Schwarz, Z.Chem. <u>21</u>, 68 (1981).
- 11) The spectroscopic data (NMR, IR, MS) and elementary analyses of all new compounds are in agreement with the structures given.
- 12) Metalated α -aminonitriles of type <u>1g</u> can be used as chiral d¹-reagents in asymmetric nucleophilic acylations; D.Enders and H.Lotter, to be published.
- 13) T.Thomson and T.S.Stevens, J.Chem.Soc. 1932, 2608.

(Received in Germany 25 November 1981)